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The linear spin-up problem for a rapidly rotating viscous diffusive ideal gas is 
considered in the limit of vanishing Ekman number E. Particular attention is given to 
gases having a large molecular weight. The gas is enclosed in a cylindrical annulus, with 
flat top and bottom walls, which is rotating around its axis of symmetry with rotation 
rate 0. The walls of the container are adiabatic. In a rotating gas (of any molecular 
weight), the Ekman layers on adiabatic walls are weak, which implies that there is no 
distinct non-diffusive response of the gas outside the Ekman and Stewartson boundary 
layers on the timescale E-'/20-' for spin-up of a homogeneous fluid. For the case of 
adiabatic walls, it is shown that the spin-up mechanisms due to viscous diffusion and 
Ekman suction are, from a formal point of view, equally strong. Therefore, the gas will 
adjust to the increased rotation rate of the container on the diffusive timescale E-ll2-l. 
However, if 6 y-  1 6 1 and M - 1, which characterizes rapidly rotating heavy 
gases (where y is the ratio of specific heats of the gas and M the Mach number), 
it is shown that the gas spins up mainly by Ekman suction on the shorter timescale 
(7- 1)2,?E-1S2-1. In such cases, the interior motion splits up into a non-diffusive 
part of geostrophic character and diffusive boundary layers of thickness (y - 1) outside 
the Ekman and Stewartson layers. The motion approaches the steady state of rigid 
rotation afgebraically instead of exponentially as is usually the case for spin-up. 

1. Introduction 
Many theoretical studies have been devoted to various aspects of rapidly rotating 

gas flows. Although the present paper is mainly academic, there are engineering 
applications of the theory of rapidly rotating gases. The most important application is 
centrifugal enrichment of uranium-hexafluoride, which is a gas of large molecular 
weight. Another interesting related application that involves flow of air is the control 
of weather in space colonies (Matsuda 1982). In this case, an artificial gravitational 
field is assumed to be set up by rotation, which, among other things, will lead to 
Coriolis effects on the atmosphere in the space colony. Although air is not a heavy gas, 
some of the phenomena discussed in the present paper are certainly also present in that 
application. The first papers treating rapidly rotating gases from a fundamental fluid 
mechanics point of view appear to have been published by Japanese researchers, 
notable examples being the work by Mikami (1973), Nakayama & Usui (1974) and 
Sakurai & Matsuda (1974). Illuminating review articles on the gasdynamics of rapidly 
rotating centrifuges have been written by Ratz (1978) and Soubbaramayer (1979). An 
account of later developments of the subject can be found in Takashima (1986). 
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Most published studies of rapidly rotating gas flows deal with steady flows. Some of 
the few exceptions are the papers by Morton & Shaughnessy (1972), Gans (1974), 
Hultgren (1978) and Miles (1981) in which adiabatic and inviscid oscillations were 
investigated. The linear spin-up problem for a rapidly rotating gas in a thermally 
conducting container has been treated by Bark, Meijer & Cohen (1979). In that study 
all oscillatory motions were filtered out by consideration of the long-time response of 
the gas to a small impulsive change of the rotation rate of the container. Recently, 
numerical solutions of the complete problem for spin-up from rest of a rapidly rotating 
gas in a container with conducting walls have been given in the literature, see Hyun & 
Park (1989, 1992). In the present paper, it is shown that the linear spin-up of a rapidly 
rotating gas in a container with adiabatic walls is completely different from the case 
with thermally conducting walls. 

The basic work on a linear spin-up of a homogeneous fluid is the paper by 
Greenspan & Howard (1963), who computed an exact integral transform solution for 
a fluid between two parallel infinite plates and an asymptotic solution for closed 
axisymmetric containers. Those authors showed that if the rotation rate of the solid 
walls is instantaneously changed from SZ to Q + ASZ, the fluid spins up on the timescale 
E-1/2Q-1, where E is the Ekman number, rather than on the viscous diffusion timescale 
E-1Q-l . The reason for this somewhat surprising result is that the main body of fluid 
is spun up inviscidly due to suction of fluid into the viscous Ekman layers on non- 
vertical walls. As the fluid is incompressible, the motion into the Ekman layers is 
accompanied by a radial motion and the adjustment to the new state of rigid rotation 
turns out to be a consequence of conservation of angular momentum. In addition to 
the motion that is 'driven' by the Ekman layers, weak oscillations appear, whose 
frequency spectrum is confined to the range ( - 20,2SZ). These oscillations, which 
decay on the timescale E ' S Z - ' ,  have no effect on the spin-up process. The theoretical 
results were found to agree very well with experiments. Later contributions to the study 
of this phenomenon are discussed in the review by Benton & Clark (1974). 

Spin-up motion occurs in several geophysical and astrophysical phenomena, and 
there are numerous studies in the literature of the spin-up of a contained axially 
stratified Boussinesq fluid. Contradictory theoretical results were obtained by Holton 
(1965) and Pedlosky (1967), who both made a number of ad hoe assumptions about the 
structure of the boundary layers. The disagreement was settled, in favour of Holton, 
by the work of Sakurai, Clark & Andre Clark (1969), Walin (1969) and Sakurai (1969). 
These authors showed that the response on the timescale E-112SZ2-1 of an axially 
stratified Boussinesq fluid is qualitatively similar to that of a homogeneous fluid. 
However, the axial stratification tends to block the Ekman suction mechanism and the 
fluid does not spin up to a state of rigid rotation on this timescale. Instead, a quasi- 
steady state is reached, which slowly evolves towards rigid rotation on the diffusive 
timescale E-'SZ-'. The multiple-scale character of the spin-up of an axially stratified 
Boussinesq fluid has been clarified by %-Maurice & Veronis (1975). Later developments 
in this field were also discussed by Benton & Clark (1974). 

For a rapidly rotating gas in an axisymmetric container with thermally conducting 
walls, there is also an intermediate quasi-steady state of non-rigid rotation that is 
asymptotically reached by the gas on the E-1"%2-1 timescale due to the Ekman suction 
mechanism (Bark et al. 1979). As in the case of a Boussinesq fluid, this state is gradually 
modified by diffusive effects and possibly weak Ekman suction until the gas is rotating 
rigidly with the same angular velocity as the container. However, if the walls of the 
container are thermally insulating, which is the problem to be considered in the present 
paper, the character of the motion will change significantly. The reason is that, in linear 
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flows of rapidly rotating gases, Ekman layers on thermally insulating walls are weak. 
This has been shown by Bark & Hultgren (1979) for steady motions but the result 
carries over to motion on the E - l l W 1  and E-lSZ-l timescales. It was shown by those 
authors that the flow in an Ekman layer on a thermally insulated surface is a factor El'' 
weaker than on a thermally conducting surface. As a consequence, the quasi-steady 
intermediate state that is reached on the E-ll2SZ-l timescale if the walls are conducting 
disappears if the walls are insulating. This means that the timescale on which the 
Ekman suction affects the gas outside the Ekman layers is the diffusive timescale. 

When y ,  the ratio of the specific heats at constant pressure and volume, respectively, 
is only slightly larger than unity, i.e. when the gas under consideration is heavy, it is 
shown in the present paper that the Ekman suction becomes relatively more important 
in a container with adiabatic walls. The gas spins up on a timescale ( y -  l)'E-'O-', 
which is short compared to the diffusive timescale but large compared to the spin-up 
timescale for a homogeneous fluid, under the assumption Ell3 < y -  1 < 1, and 
peripheral Mach numbers M of order unity. The main part of the interior motion is 
inviscid and non-diffusive but vertical and horizontal boundary layers of thickness 
(y-  1) appear outside the Stewartson and Ekman layers. A simplified asymptotic 
analysis of these boundary layers and the spin-up problem is made by consideration of 
the limit y +  I+  and M = O(1). 

In mathematical or numerical solutions of problems of spin-up in cylindrical 
containers, the logarithmic singularity on the axis of symmetry poses no difficulties. 
Unfortunately, this is not so in the problem that is dealt with in the present work, 
where a complicated singularity appears at zero radius. The somewhat unusual nature 
of this singularity, which, on the timescale considered, implies instantaneous spin-up 
on the axis of symmetry, is briefly discussed at the end of $2. To avoid numerical 
difficulties associated with this singularity, attention is in the present work restricted to 
annular containers. However, it should be pointed out that annular containers are 
common in centrifugal separation of gaseous UF,, see e.g. Bermel, Coester & Ratz 
(1 989). 

The present paper is laid out as follows. Section 2 contains the mathematical 
statement of the problem, a derivation of a simplified linearized set of equations of 
motion and a heuristic derivation of the boundary conditions. The problem 
formulation in $2  is valid for a gas of any molecular weight. A numerical solution of 
the linearized problem is presented in $ 3 .  In $4, further simplifications are made by 
assuming that y is close to one. A significant part of the details of the derivations and 
discussions in $4  is relegated to Appendices B and C. As a supplement to the somewhat 
formal development in $4 and the Appendices, $ 5  contains a discussion in qualitative 
terms of the spin-up of a heavy gas in a container, whose walls are adiabatic, with 
particular attention to the role of the Ekman layers. The main conclusions are 
summarized in $6. 

2. Formulation 
Consider a viscous and thermally conducting ideal gas, whose mechanical behaviour 

is characterized by p, 9 the dynamic shear and expansion viscosities; cp ,  c?,, the specific 
heats at constant pressure and volume, y = cp/c,; and K ,  the thermal conductivity. 
These quantities are assumed to be constants. The gas is contained in a rotating 
concentric cylindrical annulus of height 2H. The inner and outer diameters of the 
annulus are 2ri H and 2r,  H,  respectively. The geometry of the container is shown in 
figure 1. (The case ri = 0 turns out to be somewhat spurious from a mathematical point 
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FIGURE 1. Geometry of container and definition of coordinate system. 

of view and is briefly commented upon at the end of this section.) A cylindrical 
coordinate system ( r ,  q5, z) is used. The coordinate system, which is rotating with the 
container, is chosen such that the flat top and bottom walls of the container are at 
z = k H and the axis of symmetry, around which the container rotates, coincides with 
the z-axis. Initially, the temperature T of the gas is assumed to be constant (= T,) and 
the gas to be rotating rigidly with the angular velocity 52 of the container. 52 is assumed 
to be sufficiently large for effects of gravity to be negligible. The governing dimensional 
equations are 

p[u,+~Vu-u+(V x u)  x u-Q2rer+2Qe, x u] 

= -Vp-,u(V x V x u-$VV.u)+9VV.u7 . (2.1a) 

p t + V * @ u )  = 0,  (2.1 b) 
(2.1 c) 

p = RpT, s = c, log (ppP')+const. (2.1 d )  

Here u = (u, u, w), p, p and s are the velocity, pressure, density and entropy fields, 
respectively, t is time and R is the gas constant. These equations are to be solved subject 
to the initial and boundary conditions : 

p T(s, + u Vs) = K V ~  T, 

u = 0, T = T,, p = po(r) = p(ro H )  exp { y y 2  ~ [ ( - r:H)2 - I]} for t = 0, (2.2) 

u = w x L ? e , ,  n . V T = O  at z = + H ,  r i H < r < r , H  

and r = H ,  IzI < 1 for t > 0. (2.3) 

In (2.2), M is the Mach number, defined as A4 = roHQ/(yRT,)1'2. The Rossby number 
c in (2.3) is defined as E = A Q / Q  where A52 > 0 is the increase of the rotation rate of 
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the container. It is assumed that c is sufficiently small for linear theory to be valid. The 
following additional non-dimensional parameters will appear : 

Ekman number, E = ,u/pn(r, H )  H 2 Q ;  
Prandtl number, IT = p c p / K ;  

a2 = a ( y  - 1 )  M 2 / ( 2 r J 2 .  

The problem defined by (2.1 a-d), (2.2) and (2.3) will be considered in the limit 

E+O+, M = 0(1), IT = 0(1), a' = 0(1), ri , ,  = 0(1), c -g 1 and fixed. 

In this limit, Ekman layers will appear on the endwalls of the container and Stewartson 
layers on the cylindrical walls. To begin with, a2 is taken to be of order unity. The limit 
of vanishing a2, i.e. for a heavy gas with y close to 1, will be considered in $4. 

It was shown by Bark & Hultgren (1979) that the role of a steady Ekman layer at 
an insulating wall is to correct the heat flux of the geostrophic field, and that the no- 
slip condition has, to lowest order, to be fulfilled by the geostrophic field itself. This 
was shown to imply that the strength of the Ekman-layer flow is 0(cEliz)  instead of 
O(e) as is the case for a thermally conducting wall, see e.g. Sakurai & Matsuda (1974), 
and in the case of a homogeneous fluid, see e.g. Greenspan (1990). It is readily shown 
that the annihilation of the lowest-order Ekman-layer flow by an adiabatic wall also 
prevails on the timescales E-'i2Q-' and E-lQ-l. This means that although the inviscid 
vortex stretching mechanism for spin-up is still present, its effect will be felt not on the 
E-1i20-1  timescale but on the longer E-lQ-l timescale. The only relevant timescales 
for the spin-up process in the present case are thus L2-l and the diffusion timescale 
E-lQ-'. On the latter timescale, effects of viscous and thermal diffusion on the gas 
outside the boundary layers are consequently as strong as those of the weak Ekman 
suction. In the present work, the response of the gas will be considered on the diffusive 
timescale only, which means that all oscillations on the Q-l timescale are filtered out. 

r = EQt, r* = r / H .  ( 2 . 4 ~ )  

For the deviation from the state of rigid rotation that is specified by (2.2), non- 
dimensional dependent variables, which are assumed to be of order unity, are defined 
as 

Non-dimensional independent variables are defined as 

where pn is the pressure field in the rigidly rotating gas. The function po(r) is, in what 
follows, normalized with the value po(ro H ) .  Henceforth asterisks will be dropped. 

Substitution of ( 2 . 4 ~ ~  b) into (2.1 a-d) gives, to lowest order in e and E, the following 
set of equations for the geostrophic motion: 

(2.5a, b) 
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Since the time derivatives of u and w, which are correction terms of O ( E )  in ( 2 . 5 ~ )  
and (2.5 c),  respectively, are neglected, the solution of the system (2.5a-d) cannot 
satisfy all initial conditions specified in (2.2). The initial conditions for u and w must 
therefore be dropped and the solution can only satisfy 

v = p = p = T = O  for r=O. (2.6) 
The solution obtained in the present work is thus, as expected, invalid for r 
approaching zero. One can presumably compute a uniformly valid solution by finding 
an approximate solution on the 52-' timescale and matching that solution as a 
boundary-layer solution (in time) to the solution computed in the following sections. 
A procedure along this line was used by St-Maurice & Veronis (1975) in their treatment 
of a geometrically simplified version of the spin-up problem for an axially stratified 
Boussinesq fluid. In the present problem, the solution on the 52-' timescale will be 
considerably more complicated, involving not only inertial and internal waves but also 
acoustic waves, see e.g. Cans (1974), and the computation of a uniformly valid solution 
is not attempted. However, this formal incompleteness of the solution does not appear 
to be very serious, neither mathematically nor physically. It is clear from the exact 
solution by Greenspan & Howard (1963) for a homogeneous fluid, that the only 
phenomenon of importance for the spin-up process taking place on the 52-' timescale 
is the formation of the Ekman layers. But these layers are quasi-steady on the 
E-'"QSZ' timescale and the geostrophic motion on this timescale can be computed 
without knowledge of the solution on the 52-' timescale. These fortunate circumstances 
turn out to prevail in the case considered by St-Maurice & Veronis (1 975) as well. Not 
surprisingly, a well-posed problem also results in the present case without consideration 
of the solution on the 52-1 timescale, which, on reasonable grounds, thus can be 
assumed to be of secondary importance. 

The number of boundary conditions that have to be satisfied by the solution of the 
simplified system ( 2 . 5 ~ - f )  is not obvious. However, this matter can be settled by 
examination of a reduced version of the system. Using the Ekman-suction formula 
derived by, among others, Bark & Hultgren (1979), i.e. 

and carrying out essentially the same algebraic manipulations that are outlined in Bark 
& Hultgren (1979) for the derivation of equation (3.20) in that paper, one finds, after 
some algebra, the following two coupled equations for the swirl velocity v and the 
quantity E = p / p o :  

(2.8 a)  

In these equations, AT is the radial art of the Laplacian operator in cylindrical 
coordinates and ( ) denotes vertical average over the container, i.e. 

l 1  
(v)  = 1-1 v dz. 
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As in the case considered by Bark & Hultgren (1979), the largest velocity component 
of the interior flow, i.e. the swirl velocity u, must satisfy the no-slip condition, see the 
first of conditions (2.3), on solid walls of the container 

u = r  for z = & 1 , r i < r < r 0  and V = Y ~ , ~  for I z I<l , r=r i , , .  (2.9) 

For any function 3 one can express u in terms of ,Z by computing the Green’s function 
for the parabolic differential operator in (2.8b) and the boundary conditions (2.9). If 
that expression for u is substituted into (2.8a), one obtains a partial integro-differential 
equation for 3 of fourth order in r .  One must consequently specify two further 
boundary conditions for B at each of r = ri and r = r,. It should be noted that p ,  and 
hence also 3, are independent of z according to ( 2 . 5 ~ ) .  The additionaf boundary 
conditions, the specification of which requires some discussion of the Stewartson 
layers, must consequently not depend on z.  

It will first be shown, using essentially the same arguments as in the work by Bark 
& Hultgren (1979) on the steady case, that the vertically average of the heat flux 
associated with the geostrophic flow, i.e. (T ) ,  must vanish at r = ri, If the stream 
function for the meridional flow in a Stewartson layer is denoted E”’v, where q 
is assumed to be of order unity, the following formula relating v and the interior 
temperature field T a t  a thermally insulated vertical boundary can be derived (Bark & 
Hultgren 1979, p. 112): 

(2.10) 

where [ is the stretched radial coordinate. For a Stewartson layer of the assumed 
strength one must prescribe that p = 0 at z = f 1 since otherwise, the axial velocity in 
the layer, i.e. vt, must be corrected at z = f 1 by the axial velocity of an Ekman-layer 
extension, whose horizontal flow is of order E-116. However, there are no further 
correction fields available to cancel for example the heat flux of order E-’/’ in such an 
Ekman layer at z = & 1 .  Using the fact that v thus must vanish on the horizontal 
boundaries and computing (T , )  from (2.10) one finds that a non-zero value of (T , )  
cannot be corrected at a vertical boundary by a Stewartson Ell3 layer. The only 
remaining possibility to correct this quantity to zero at r = ri,o would be to introduce 
a Stewartson Ell4 layer, whose swirl velocity is of order But this alternative also 
fails because such a layer would have an Ekman-layer extension with an (uncorrectable) 
heat flux of order E-ll4 at z = & 1.t The conclusion is that the solution of system 
(2.5a-f), or its equivalent (2.8~1, b), must fulfil 

There seems to be no difficulty to correct T,-(T,) at the vertical boundaries by 
constructing an El/’ layer solution of the kind discussed above. The reader is referred 
to Bark & Hultgren (1979) for details. 

The remaining boundary condition is derived by considering the vertically averaged 
geostrophic radial volume flux (u ) .  It is a straightforward matter to compute the radial 
volume flux QE(7, r), say, in each of the Ekman layers by using (2.7). The result is 

(T , )  = 0 at Y = (2.11) 

7 Regarding the viscous adjustment of the swirl velocity field, the role of the Ell4 layer that appears 
in the homogeneous case ( M  = 0 + )  is in the present problem included in the equations for the 
interior motion (2 .5) .  Thus, in the present case, the interior motion may be regarded as that of a 
degenerate Ell4 layer. 
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It follows directly from (2 .5a , f )  and the definition of the function p,(r) in (2.2) that 

v = i(rT+Er). (2.13) 

If this equation is differentiated with respect to z at r = r t , o  and use is made of ( 2 . 5 ~ )  
and the second of the boundary conditions in (2.9) it follows that T,  = 0 at r = r i .o .  
Equation (2.12) then gives that QE = 0 at the vertical boundaries, which, in turn, 
implies that the vertically averaged volume flux of the geostrophic flow must also 
vanish at these boundaries. The remaining boundary condition is thus 

( u )  = 0 at r = (2.14) 

This completes the mathematical formulation of the problem. The solution of the 
system of equations ( 2 . 5 ~ - f )  with the initial condition (2.6) and the boundary 
conditions (2.9), (2.1 1) and (2.14) has to be computed by use of numerical methods. 
Results of such calculations are presented in the next section. Further analytic 
simplifications can be made for small values of a2. This limit is considered in 94. 

The asymptotic steady solution of the problem formulated above, which is a state of 
rigid rotation at constant temperature, is readily computed. In principle, there appear 
to be no difficulties in computing the modifications of the steady solution that would 
be caused by introducing gravity, which has been neglected in this work. Thus, in 
contrast to the case of a Boussinesq fluid, which as pointed out by Greenspan (1990, 
3 1.4) cannot be in complete equilibrium in a state of rigid rotation, such an equilibrium 
is possible for a rotating isothermal gas. In both these cases, the isopycnic surfaces are 
paraboloids. For a Boussinesq fluid, the isothermal surfaces are also paraboloids. As 
shown by Greenspan (1 990), this will always lead to a non-divergent diffusive heat flux 
and hence convection, albeit generally weak. For an isothermal gas, however, this 
situation does not occur and a stratification, which may vary in both the r- and z- 
directions, appears as the equilibrium state. 

It may be worth pointing out that, in the limit of vanishing Mach number, the 
solution of the problem defined in this section does not reduce to the solution for spin- 
up of a homogeneous fluid in a container of finite size that was given by Greenspan & 
Howard (1963). Thus, in contrast to the case dealt with by Bark et al. (1978), the limits 
E+O+ and M+O+ are not commutative. The formal reason for this somewhat 
disturbing circumstance is that the scaling of the time variable and the dependent 
variables in terms of fractional powers of the Ekman number E used in this work is 
different from that in the corresponding problem for a homogeneous fluid. For 
example, in the latter case, spin-up is completed on the (dimensional) timescale 
E-lI2 52-'. On the timescale under consideration in this work, i.e. E-'Q-', the spin-up 
of a homogeneous fluid would thus take place during a scaled non-dimensional time 
interval of zero length. Therefore, the solution of the present problem is singular for 
M = 0. Another closely related manifestation of this singular behaviour is the fact that, 
in the present case, the order of magnitude of the flow in the Ekman layers is ,Ell2 

whereas, for the case of a homogeneous fluid, the corresponding order of magnitude 
is E .  Thus, the order of magnitude of the scaled non-dimensional Ekman-layer flow in 
the present case goes to infinity for vanishing Mach number. The mathematical 
structure of the solution of the present problem for small but finite values of M appears 
to be complicated and investigation of this matter is left for future work. The physical 
reasons for the aforementioned mathematical singularity are, however, obvious. For 
spin-up of a homogeneous fluid, the geostrophic motion is inviscid. In the present case, 
on the other hand, the motion outside the boundary layers is affected by diffusion, both 
viscous and thermal, to lowest order. 



Spin-up of heavy gas in a thermally insulated annulus 39 1 

An issue that is closely related to the previous discussion is the absence of Stewartson 
Ell4 layers in the present problem. It turns out that the approximate equations (2.5a-e) 
for conservation of momentum and heat express the same physics as the equations for 
the unsteady Stewartson Ell4 layers that appear in a rapidly rotating gas during spin- 
up on the E-1/2Q2-1 timescale in a container whose walls are thermally conducting, see 
equations (A 3u-f) in Bark et al. (1978). Thus, on the longer timescale E'4-l 

considered in this work, the Stewartson Ell4 layers have been given enough time to 
diffuse into the interior. These thickened boundary layers have thereby replaced the 
inviscid and non-diffusive flow that appears outside in the interior on the shorter 
timescale E-li2Q-l. This effect was also observed by Matsuda & Hashimoto (1976) in 
a somewhat different parameter regime. 

Some comments, albeit perhaps somewhat speculative, can be made on the expected 
nature of the motion in the limit r i + O + ,  which is equivalent to removing the inner 
cylinder. The following arguments rest on the reasonable assumption that all 
dependent variables in the interior are independent of z for sufficiently small values of 
r .  It is readily verified aposteriori that this assumption is self-consistent. To begin with, 
one notes that the gradient of the unperturbed density field p,(r)  vanishes in the limit 
considered. Also, the net fluxes of heat and mass into the Stewartson Ell3 layer on a 
cylindrical wall of infinitesimal radius are prescribed to be zero, see boundary 
conditions (2.11) and (2.14). This implies that the thermodynamic state of the gas in 
some small region near the axis of symmetry will change on the slow timescale E-lQ-' 
only due to adiabatic expansion, which indicates that the spatial variation of the 
density and temperature fields will be modest. (For the density distribution for 
example, one would, for reasons of cylindrical symmetry, expect something like 
p&, 7)) z A(7) + B(7)r2 + . . . .) Thus, close to the axis of symmetry, the gas will spin 
up like a homogeneous fluid on the timescale E-1/2Q2-1, which, when measured on 
the slow diffusive timescale, is instantaneous. It may be worth pointing out that this 
observation is consistent with the boundary condition (2.9) for the swirl velocity field 
for ri + O +  , which says that, in the neighbourhood of an inner cylinder of vanishing 
radius, the gas spins up immediately. Obviously, the rapid response of the gas near the 
axis of symmetry leads to serious difficulties not only in the present simplified problem 
but also in a numerical solution of the complete Navier-Stokes equations. 

3. Numerical results 
The mathematical problem defined in the previous section was solved numerically 

for different gases, container geometries and rates of rotation. The computational 
scheme is outlined in Appendix A. In order to keep the number of graphs at a 
reasonable level, attention will in what follows be restricted to a container geometry 
with ri = 0.25 and r ,  = 0.75. Results for UF, at room temperature with y = 1.067 and 
cr = 0.95 will be discussed in some detail. The rate of rotation is chosen such that the 
Mach number A4 = 2, which, for UF, gives a2 = 0.11. The character of the motion for 
other values of y and A4 will be discussed in qualitative terms at the end of this section. 

Level curves for the swirl velocity 0 and the temperature T a t  three different instants 
of time are shown in figures 2(a-c) and 3(a-c), respectively. As all field quantities 
except w are symmetric with respect to the plane z = 0, only the upper half of the 
container is shown (w is antisymmetric with respect to z = 0). The evolution of the swirl 
velocity field show three very distinct features. First, apart from a boundary-layer-like 
region, whose thickness increases with time, outside the Ekman layers on the 
horizontal walls, the swirl velocity is practically independent of z .  The motion has a 
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FIGURE 2(a-c). Level curves for the swirl velocity field z) at different times for M = 2. In all 
graphs, Ail = 0.1 between level curves. (u)  T = (b) T = ( c )  T = lo-". 

FIGURE 3(a-c). Level curves for the temperature field T at different times for M = 2. In all 
graphs, AT = 0.1 between level curves. (a) T = (6)  T = ( c )  T = lo-". 

columnar character that is reminiscent of the spin-up of a homogeneous fluid. This 
indicates that the spin-up in the present case is controlled by some inviscid mechanism 
akin to Ekman suction, in spite of the fact that, as was shown in the previous section, 
effects of Ekman suction are no stronger than those due to diffusion. Secondly, the 
spin-up is unexpectedly fast. The swirl velocity field that is shown in figure 2(c) is, 
except close to the horizontal walls and close to the outer cylindrical wall, not very far 
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from the asymptotic state of rigid rotation as early as for 7 = lop3. For 7 = lo-', one 
finds that the deviation from rigid rotation is of order 0.05. The third notable feature 
of the swirl velocity field is that effects of diffusion near the inner vertical wall are 
stronger than near the outer wall. This is simply a consequence of the strong radial 
variation of the basic density field. This variation increases strongly with the Mach 
number. 

As can be inferred from figure 3 (a-c), the nature of the evolution of the temperature 
field is also unexpected. The boundary-layer character of the temperature distribution 
outside the Ekman layers and the presence of a short timescale are again evident. 
Furthermore, outside the boundary-layer-like region and outside thin regions of 
(weak) variation near the vertical walls, the gas is practically isothermal. 

For gases that are not very heavy, i.e. gases with y-  1 - 1, numerical computations 
show that the boundary-layer character of the geostrophic motion, for a fixed value of 
the Mach number, is significantly less pronounced than for heavy gases. In the case of 
air, for which y -  1 z 0.4, the aforementioned effects can still be discerned but are 
considerably weaker than for UF,. If the value of y is kept fixed and the Mach number 
is increased, the boundary-layer nature of the geostrophic flow again becomes less 
evident. These observations suggest that the character of the motion is determined by 
the value of the parameter a'. 

The result that, for Mach numbers of order unity, the main part of a heavy gas spins 
up  inviscidly and isothermally on a very short timescale relative to the diffusion 
timescale will be investigated in some detail in the following two sections. 

4. Approximate solution for a heavy gas 
For a very heavy gas, the ratio y of the specific heats at constant pressure and 

volume, respectively, is only slightly larger than unity. As a' - (7-  l), the parameter 
a2 is very small for such gases provided that M is not too large. In the present section, 
an approximate solution of (2.5a-f) for the geostrophic motion will be computed in 
the limit 

(4.1) 

For small values of a', the results of the previous section show that the solution, 
outside the Ekman and Stewartson layers, is of boundary-layer character, with 
diffusive effects confined to regions close to the container walls. The nature of the 
approximate solution in the limit (4.1) can be inferred from the Ekman-suction 
formula (2.7). This formula shows that the Ekman-suction velocity becomes infinite in 
the limit (4.1). This somewhat surprising result is further discussed in $ 5 .  However, one 
may already at this stage infer that outside some neighbourhood of the boundaries, 
where viscous and thermal diffusion can be expected to be of importance, the gas will 
initially respond very rapidly in an inviscid and non-diffusive manner to a very strong 
Ekman suction. The fact that the Ekman-suction velocity is singular as a2 -+ 0 + thus 
suggests that another (short) timescale is of relevance. A simple order-of-magnitude 
analysis of the equations of motion (2.5a:f) accounting for the order of magnitude of 
the Ekman-suction velocity as given by (2.7) shows that a meaningful perturbation 
problem results if time and the dependent variables outside anticipated regions of 
boundary-layer character near the walls, which will be analysed later, are scaled as 
follows : 

Here quantities with the subscript Z are assumed to be of order unity. Substitution of 

a' + O +  , ,8 = ya2/ (y-  1) = y ~ r M ~ / / ( 2 r , ) ~  = O( 1). 

7 = 7/a4, (u, v,  w , p ,  p, T )  = (aP4uI, v I ,  pI, a'T,). (4.2) 



394 I. A .  A .  Lindblad. F. H .  Bark and S. Zahrai 

------ -I------ 
FIGURE 4. Boundary-layer structure for small values of a'. 

these scaled variables into (2.5 a-d) gives the following lowest-order equations (with 

(4.3 a-c) - 
- 2v, i- EIY = 0, v r  ?+ 2u, = 0, bIZ = 0, 

(4.3 d )  

These equations imply that the motion is not only geostrophic but also barotropic. It 
follows from (4.3 a-d) that all dependent variables, except w1 and q, are independent 
of z ;  wr is linear in z and the higher-order temperature field a2T, does not have to be 
considered in order to compute the velocity and pressure fields to lowest order. The 
solution of (4.3~-d) can obviously not fulfil all boundary conditions at the walls. 
Boundary-layer solutions must thus be constructed. It should be pointed out that such 
boundary-layer solutions are local solutions of the system of equations ( 2 . 5 ~ - f )  for the 
motion of the geostrophic flow and are thus 'outer' solutions as seen from the Ekman 
and Stewartson Ell3 layers. For consistency, one must thus require that the thicknesses 
of the boundary-layer parts of the geostrophic motion are larger than the thicknesses 
of the Ekman and Stewartson layers. It will turn out that this implies that the 
condition Ell3 6 a2 6 1 has to be fulfilled. The boundary-layer structure of the flow is 
shown in figure 4. 

To compute the boundary layer near the bottom and top walls of the container, a 
stretched coordinate and scaled variables are defined as follows 

c = (1 * z ) / a 2 ,  (u, u, w, P, p, = U H ,  a-2wH, 0, pff,  qj), (4.4) 
where quantities denoted by the subscript H are assumed to be of order unity. The 
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statement that the pressure is identically equal to zero follows from (2.5 c )  and implies 
that the gas in the boundary layer will behave as a Boussinesq fluid. From (2.5~-f) one 
finds the following equations to lowest order: 

2po vH + ~ P H  = 0, PO + 2po UH = vHCC9 (4.5a, 6) 

The solutions of (4.3~-d) and (4.5~-e) are separately required to fulfil the initial 
conditions (2.6). According to (2.7), (2.9) and the scaling rules (4.1) and (4.4) one must 
also prescribe 

(4.6a, b) 

for z = - 1 and z = 1 respectively. H(T) is the Heaviside step function. The solution for 
vH in terms of the so far unknown function v r  is 

1 
uH + uI = rH(’i), wI = f ~ THrc, 

4rpo 

v H  = erfc [Go c/4;i)”2yl - erfc [Go e/4’i’)’/’lJ vr7(r, 7-7’) d7’. (4.7) 

The interaction between the motion in the horizontal boundary layers and that in the 
central parts of the container is now clear. Owing to viscous diffusion, the increased 
rotation rate of the container walls is immediately felt by the gas in the neighbourhood 
of the horizontal boundaries. This motion is accompanied by a temperature field, 
which, according to (4.5a, e),  is similar to the ‘thermal wind’ encountered in 
geophysical fluid dynamics, see e.g. Holton (1979). This temperature field is not 
compatible with the boundary condition at the adiabatic walls and is corrected by 
(divergent) Ekman layers. As THY is of order a-’, the Ekman suction velocity will, 
according to (2.7), be of order a-‘, i.e. of the same order of magnitude as the axial 
velocity a-4wI of the inviscid and adiabatic flow but larger than the axial velocity a P w H  
in the horizontal boundary layers. Gas from the interior is thus sucked into the Ekman 
layers right through the horizontal boundary layers. 

An equation for vi can be derived as follows: uI and ZrrF are expressed in terms of 
uI by using (4.3 a, b) and are inserted into the derivative with respect r of the equation 
of continuity (4.34.  The resulting equation is thereafter integrated from z = - 1 to 
z = 1. One then obtains an equation that contains partial derivatives of vI and a linear 
combination of w J r ,  f 1 , ~ ) .  These latter quantities can be expressed in terms of uI by 
using (4.5a, e) ,  (4.6b) and (4.7). After a little calculation, this leads to the following 
singular partial integro-differential equation for vr(r, T )  : 

I: 

where /3 is defined by (4.1). In addition to the initial condition vI(r ,  0) = 0, boundary 
conditions at r = r i , o  are needed to determine the solution of this equation. These 
boundary conditions can be derived by considering the structure of the lowest-order 
mathematical problems for the motion in the boundary layer (outside the Stewartson 
layers) at r = and the motion in the corner regions in the neighbourhood of r = 

ri,*,z= f 1. The calculations are carried out in Appendix B and the result is 

(4.9) uI(ri ,  *, T)  = T i ,  ,,{ 1 - exp [h2(ri, ,,) x’i] erfc [h(r,, ,) ( x ~ ) ) ” ~ ] } ,  
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FIGURE 5. Comparison between different approximate solutions for the swirl velocity field v for 
M = 2 at z = 0. Solutions of equations (2.5~-f) which include diffusive effects and equation (4.8) for 
the non-diffusive interior. The boundary-layer-like behaviour of the diffusive solution should be 
noted. The values of 7 are n = 1 -4. n = 1 -4. The corresponding values for 7 are 7.81 x 

The numerical solution of the simplified problem for vI ( r ,7 )  defined by (4.Q the 
initial condition uI(r ,  0) = 0 and the boundary condition (4.9) have been compared with 
the numerical solution of the simplified but still more realistic model problem defined 
in $2. A comparison between the two solutions at z = 0 is shown in figure 5 for the 
same parameter settings as in figures 2 and 3. 

Figure 5 shows that, outside the radial boundary layers present in the viscous model, 
the agreement between the two solutions is excellent for small values of 7 (‘i smaller 
than 1). The motion in these regions is briefly discussed in Appendix B. For 7 - 
the effects of diffusion are felt everywhere. Thus, even though the initial phase of the 
spin-up is distinctly inviscid and isothermal, the final adjustment to rigid rotation will 
involve effects of diffusion. Stated somewhat more precisely, one finds that the 
approach to rigid rotation outside the vertical and horizontal boundary layers is 
completely inviscid and isothermal in the limit y+ 1 + O  with M fixed For a small but 
finite value of y -  1, diffusive effects will take part in the later stage of the process. 

Solutions of the problem defined by (4.8) and (4.9) for small and large values of T 
are computed in Appendix C. These solutions are of the form 

(4.10) 
(4.1 1) 

An ordinary differential equation for the function D(r) and an analytical expression 
the function ij(r) are given in Appendix C. It can be shown that the result vI = O ( T ~ ’ ~ )  
for small values of 7 holds for any value of a. The algebraic details are complicated and 
are omitted here. It follows from (4.10) and (4.3a, b, d )  that uI and wI are O ( ; I ~ ’ ~ )  for 
small values of 7, which is a manifestation of the non-uniform validity of the solution 
as ;I approaches zero. The solution (4.1 1) shows that the approach to the steady state 
in the limit y + 1 + , M fixed, is algebraic. A comparison of the small- and large-time 

uI(r ,  ;I) = p;’%(r) ~ ~ 1 ’  + O(T), 

vI ( r ,  F)  = r + r-1pi’2ij(r) 7-l” + O(’i-’), 
‘i < 1, 

7 >> 1. 
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FIGURE 6. Comparison between the approximate solutions (solid curve) and the numerical solution 
of equation (4.8) (dots) for M = 2.  (a) Approximate solution (4.10); the values of 7 are 
and 5 x 

3 x 
(b) Approximate solution (4.11); the values of T are 0.3, 0.5 and 1. 

approximations with the solution of (4.8) in figures 6(a) and 6(b)  shows that the 
simplified expressions capture well the initial and final phases of the inviscid spin-up 
process. The large-time behaviour however, may be of more academic interest as 
viscous effects dominate the later stages of the spin-up for small but finite y-  1 as was 
demonstrated previously. 

5.  Discussion 
The role of the Ekman layers in the spin-up mechanism investigated in the previous 

sections may be worth some comments. In the case of a homogeneous fluid, as well as 
in the somewhat similar case of a rapidly rotating gas in a thermally conducting 
container, the Ekman layers exert active control on the swirling motion in the interior 
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(see e.g. Greenspan & Howard 1963 and Bark et al. 1978, respectively). However, in 
the case of a heavy gas in a container with thermally insulating walls, the effects of the 
Ekman-suction mechanism is a little more complicated. In turns out, though, that 
some insight, including a physical argument for the reduced strength of the flow in the 
Eknian layers, can be obtained from direct inspection of the equations for the Ekman 
layers in the form of Bark et al. (1978). In these layers, which are quasi-steady on the 
diffusive timescale, the dependent variables and the boundary-layer coordinate 7 are 
scaled as follows: 

where quantities denoted by the subscript E are assumed to be of order unity and the 
exponent r in the scaling factor for the motion as a whole in the boundary layer is to 
be determined. Integration of the Ekman-layer version of the energy equation with 
respect to 7 between 0 and 00 gives, for example equation ( 1 3 d )  in Bark et al. (1978), 

This relation quantifies the local balance (at each value of r )  between vertical diffusion 
of heat to/from the boundary and the net rate of positive/negative production of heat 
that is caused by compression work per unit time on gas particles that are moving 
radially in the stratified background density field po. Owing to the local homogeneity 
of the Ekman layer in the direction of e,, all heat produced by compression work at 
each radial location in the layer must thus be removed by diffusion and, so to speak, 
be taken over by the boundary-layer-like part of the geostrophic motion as expressed 
by the boundary condition (2.3) for the temperature field 

E ~ - ~ I ~ T ~ ~ + ~ - ~ T ~ ~ +  ... = 0, 7 = < = 0. (5.3) 

As a consequence of the shape of the velocity distribution in the Ekman layer, the net 
rate of production of heat due to compression in the boundary layer, i.e. the right-hand 
side of (5.2),  is always non-zero. This is fairly obvious on intuitive grounds and can 
readily be shown mathematically. Consequently, if the strength of the motion in the 
Ekman layer is proportional to the Rossby number c, i.e. r = 0 in ( 5 .  l ) ,  there is a non- 
zero diffusive heat flux of order cE-l12 at the horizontal boundaries, which is much too 
large to be removed by the O ( E ~ - ~ )  heat flux associated with the boundary-layer-like 
part of the interior motion and is therefore not compatible with the boundary 
condition on the adiabatic walls. However, if the Ekman layer is weak in the sense that 
r = i, the aforementioned two heat fluxes can cancel at the horizontal boundaries in 
order to fulfil the adiabatic constraint to lowest order. These arguments are, in several 
respects, quite similar to those given by Matsuda & Hashimoto (1976) and Matsuda, 
Hashimoto & Takeda (1976), who considered similar problems but in different 
parameter regimes. The result r = $ was derived by Bark & Hultgren (1979) on purely 
formal grounds. 

The singular behaviour of the Ekman suction for small values of a’ and the scaling 
relations (4.1) and (4.4) that were formally postulated in the previous section can also 
be given a physical interpretation by considering (5.2). This equation implies that a 
diffusive heat flux TEll of order unity in the Ekman layer is set up by a large radial 
velocity uE of order a?. This equation implies that the diffusive heat flux in the Ekman 
layer, i.e. TE,], which has to be of order unity to annihilate the heat flux from the 
geostrophic motion at the insulated boundaries, forces a large radial velocity - a-‘ in 
the Ekman layer. This is a consequence of the fact that a heavy gas has many internal 
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degrees of freedom, which means that a large amount of thermal energy has to be 
supplied to such a gas in order to obtain a given change of temperature. (The 
temperature is a measure of the translational modes only.) In the present case, that 
power is supplied by compression (or expansion) due to rapid radial motion in the 
pressure field of the basic state. The large radial velocity leads, of course, to a large 
axial velocity, which is accounted for by the factor aP2 in the Ekman-suction formula 
(2.7). The authors owe this argument to Professor Takeo Sakurai. 

The fact that the boundary-layer character of the geostrophic motion, as was 
discussed at the end of the previous section, disappears for increasing values of the 
Mach number for a small but finite value of y -  1, can also be explained by (5.2). If the 
Mach number is increased, the radial variation of the basic density field is increased. 
Thus, the radial velocity in the Ekman layer that is needed to provide a given rate of 
compression work is reduced. A reduced radial velocity in the Ekman layer will, owing 
to continuity, reduce the Ekman suction, which, in turn, means that the boundary- 
layer character of the geostrophic motion becomes weaker. 

Formula (2.7) was derived by Bark & Hultgren (1979) under the assumption that the 
gradient of the interior temperature field at the horizontal boundaries is of order unity. 
For small values of a', though, that gradient is of order a-', see (5.3), owing to the 
boundary-layer character of the temperature field outside the Ekman layers. This 
means that the axial velocity in the Ekman layer, which is communicated to the 
interior, is of order aP4. The strong Ekman-layer suction, in turn, sets up a meridional 
circulation of strength aP4 in the interior of the container as was deduced formally in 
the previous section, see the scaling given by (4.2). For heavy gases, thc spin-up 
timescale is thus reduced from E-'St-l to ( y -  l)'E-'St-'. 

6. Conclusions 
It has been shown that a rapidly rotating gas in a container, whose walls are 

adiabatic, adjusts to a suddenly increased rotation rate of the container on the diffusive 
timescale ESt-l, in contrast to the E!Z'I2 timescale that is the case for a homogeneous 
fluid. The reason is that the motion in the Ekman layers is a factor El'' weaker than 
in the homogeneous fluid case, which means that the timescale for vortex stretching due 
to the Ekman-suction mechanism is of the same order of magnitude as that for viscous 
and thermal diffusion. The role of the weak Ekman layers is to cancel the heat flux 
associated with the geostrophic motion at the horizontal walls. In the homogeneous 
fluid case, there are two overlapping boundary layers at the vertical walls, the 
Stewartson Eli4 and Eli3 layers, respectively. These layers adjust the inviscid 
geostrophic motion in the interior to the no-slip condition at the vertical walls. In the 
present case, only the Eli3 layer appears. The role of the Eli4 layer has been taken over 
by the interior motion, which is partially controlled by viscous and diffusive effects. 

For heavy gases, which are characterized by small values of ( y -  I ) ,  that are rotating 
at angular velocities such that both the parameter combinations M'(y -  1) and 
Eli3(?- 1)-' are small, the spin-up process takes place on a reduced timescale 
( y  - 1)2 E - W ' .  The primary reason for this perhaps somewhat unexpected result 
is that, for small values of (7- I), the Ekman-suction velocity is proportional to 
( y  - 1)-l provided that the temperature gradient of the interior is of order unity at the 
horizontal walls. This indicates a shorter timescale for spin-up. However, a shorter 
timescale means that, outside the Ekman and Stewartson layers, the effects of viscous 
and thermal diffusion are felt by the gas only in the neighbourhood of the boundaries 
whereas the Ekman suction has a global effect. One finds that the motion outside the 
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Ekman and Stewartson layers splits into a non-diffusive and inviscid interior region, in 
which the motion of the gas is barotropic and geostrophic, and boundary layers of 
thickness proportional to (y-  1) at the horizontal and vertical walls. The weak Ekman 
layers must thus correct a temperature gradient of order ( y -  I)-’, which results in an 
Ekman suction velocity of order ( y -  l)-z This suction velocity, in turn, gives a 
(dimensional) timescale for spin-up of ( y  - 1)2E-’Q-’. 

The authors owe the solution (B 14) in Appendix B to Professor emeritus Bengt Joel 
Anderson of the Royal Institute of Technology. Many valuable points of view on the 
present work, especially the contents of 3 5, were given by Professor Takeo Sakurai of 
Kyoto University and Professor Harvey P. Greenspan of Massachusetts Institute of 
Technology. Professor Nobumasa Sugimoto of Osaka University gave several useful 
suggestions on the manuscript. 

Appendix A. Numerical method 
The system of equations (2.5) was integrated numerically, using initial conditions 

(2.6) and boundary conditions (2.7), (2.9), (2.1 1) and (2.14). Prior to the discretization 
of the equations, they are reformulated in terms of 

U = ur, V = v / r ,  W = wr, 0 = T-2v/r, 17 = p / p , ,  (A 1)  
where @, 17 depend on r and 7 only. 

In order to allow a non-equidistant spacing in the container the r- and z-coordinates 
are mapped to a computational [(r), c(z) domain covering the region (0,O) to (1,l). The 
equations are discretized in the 6, [ coordinates using central second-order-accurate 
difference formulae. In order to enable a compact second-order space discretization of 
the equations the variables are stored on a staggered grid. The space discretization is, 
including dummy points to take care of the boundary conditions 

[, = ihr, h, = l / N , ,  Q = jh,, h, = l/N,, (A 2) 

(A 3 4  

K , j =  l”([f-l,z,<j-l/z,~), o d i d N , + l ,  o < j < N , + l ,  (A 3 b )  

(A 3 c )  

(A 3 4  

(A 3 4  

The time differencing is done using Crank-Nicholson discretization, resulting in an 
implicit second-order scheme. The stability characteristics of this method are 
favourable in cases like the ones calculated below with a very large span in timescales 
over the computational domain. The variables are also stored at staggered time levels 

T‘ = k AT, (A 4) 

U t j  = q , j ( 7 ” l ’ z ) ,  q j  = K , J T k ) ,  W f j  = w ,  2 3  . ( 7 ” 9 ,  (A 5 )  

17: = IT@), 0& = O#), (A 6) 

q, j  = U(&, Cj-l/z, T ) ,  0 d i d N,, 1 d j d N,, 

y, j  = W(5i-1,2, Cj, T), 1 d i d N,. 0 dj d N,, 

17, = 17([ii-1,z,7), 0 d i d N , +  1, 

Oj = O(&,T), - 1 < i d N,+ 1. 

reflecting the lack of initial conditions and time derivatives for U,  Win the equations. 
The results shown below were obtained on grids with N, = 40, N, = 20. The grid-point 
distribution is determined from the expected variation of the solution obtained from 
the asymptotic results of $4. Test calculations on grids with twice the resolution gave 
virtually the same results. 
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Appendix B. Derivation of boundary conditions for equation (4.8) 
For the derivation of the boundary conditions for uI at r = ri ,  o ,  the vertical boundary 

layers as well as the corner regions must be considered. A consistent perturbation for 
the boundary-layer problem at r = ri can be formulated in terms of the following 
stretched coordinate and scaled dependent variables : 

(B 1) 

Variables denoted by subscript V are assumed to be of order unity. (The layer at r = 
r ,  is, of course, computed in exactly the same way.) Substitution of (B 1) in (2.5a-e) 
gives the following system of equations: 

2u,+Ev5 = 0, p0(ri)(uv,+2uv) = u , , , ~ ~ ,  svz = 0, uvt+wv2 = 0. (B 2a-d) 

Incidentally, these equations are of exactly the same form as those for the unsteady 
Stewartson layer (see Greenspan & Howard 1963). However, the solution in the 
present case is considerably more complicated owing to the coupling to the solution in 
the corner regions. It follows directly from (B 2a-d) that all dependent variables except 
wv are independent of z ;  wv is linear in z .  The initial and boundary conditions for the 
system (B 2a-d) are 

(B 3) 

The boundary condition for vI can be obtained without the solution of the system of 
equations (B 2a-d). As will be shown below, only some general properties of the 
solution are needed. A solution of (B 2a-d) is given at the end of this Appendix. 

In the corner regions, the stretched variables 5 and 6, which are defined by (4.4) and 
(B l), are both of order unity and the dependent variables are scaled as 

(B 4) 

6 = ( r  - r i ) /az ,  (u,  u ,  w,p, p, T )  = (cL-~u,,,, uv, a-'wv, a2pv, a2pv, a",). 

3 

u&, 0) = 0, ~ ~ ( 0 ,  ;i) + uI(ri, y) = ri H(;t), uv (co ,  ;t) = 0. 

(4 21, w, P ,  p, T )  = (a-4uc, uc, a-Iwc, 0, pc, T,). 

For notational simplicity, the necessary algebraic details will be given only for the 
corner region r x ri ,  z x - 1. One finds the following lowest-order equations: 

- 2p,(r,) uc = T i  P c*1 P"(Yi) (uc,  + 2uc) = v,g< + "C& (B 5 4  6) 

ucg+ wcC = 0, gp,(ri) T,, = T,,,+ 7&, po(ri) T,+p, = 0. (B 5c-e) 

The solution of this system is required to satisfy the following initial and boundary 
conditions : 

u c ( L  g, 0) = 0, U,(O, L-, 3 + Y H ( Y i ,  g, ;t> = Ti  H ( 3  u,(5,0, ;i> + uv(L ;i> = H(T),\ 
J (B6)  

U,([,Co,T) = 0, uc(co,g,7)  = 0. 

It should be noted that the axial velocity in the corner region is of higher order than 
that in the vertical layer. The axial mass flux in the vertical layer is thus supplied 
directly from the Ekman layer at the bottom of the corner region, i.e. 

boundary condition for uI  is derived from the lowest-order approximation of 
which reads 

u,+u, = 0, r = r i .  (B 8) 
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uI is simply related to v1 by (4.3b). One may express u y  in terms of v v  from (B 2 d ) ,  
which gives 

u&, 7) = - wJC, - 1, 7) dc‘, (B 9) 

where the linear dependence of wli on z has been used. From (B 7) and (B 9) one then 
obtains 

1: 

According to (2.9) and (2.13), it follows that the derivative with respect to z of the 
temperature field T = TI + Tv + TH + q. at r = ri is zero. To lowest order, this implies 
that 

q&i, 6 , T )  + T,<(O, {, ;i) = 0. (B 11) 

THr can be expressed in terms of v1 by using (4.5a, e) and (4.7). Combination of the 
formula so obtained and (B 8) (B 10) and (B 11) leads to the following boundary 
conditions for v I :  

The solution of this integral equation is 

which is the boundary condition for (4.8). 
The solution of the coupled system ( B 2 a - d )  and (B5a-e) with the boundary 

conditions (B 3) and (B 6) is, in the general case, rather complicated. For the special 
case CT = 1, which is close to the measured value IJ = 0.95 for UF, at room 
temperature, a reasonably simple solution for vv can be computed. In terms of the 
rescaled time variable 7’ = po(ri)7,  where the prime henceforth is dropped, and the 
constant a = 1/(2r3 one finds the following solution: 

uv = ~ 2,5’,2 1 [ri  ff(7 -T’) - uI(ri, 7-7‘)l 5’-’12 erfc ( a ~ ” ~ ~ )  exp {a2? - [2/4~”) d7’ 

(B 14) 

The details of the derivation of (B 14) are somewhat complicated and are not 
reproduced here. The manipulations are available on request from the authors. 

[ ~ ” - 1 / 2  exp (- cz/45”) - 7’+1/2 exp ( - Cz/47’)] dC d7“ d?‘. 

Appendix C. Approximate solution of equation (4.8) for small and large 
values of T 

For small values of 7, the boundary condition (4.9) can be written 
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which suggests that an approximate solution of (4.8) is of the form 

vI(r,  T)  = p;1/2g(r )  T'/' + O(T), ;i < I .  (C 5 )  

Substitution of this ansatz into (4.8) and (B 1) leads to the following problem for the 
function g(r)  : 

- 2(cr)"2 
z , o  rc1J2ri, , v(r .  ) = 

It is a straightforward matter to solve this problem by numerical methods. 

representation 
For large values of 7, the boundary condition (4.9) has the approximate 

which indicates that the solution of (4.8) is of the form 

vI(r ,  7) = r + r-1pi'2 a(r)  T-'/' + O(T-~) ,  7 %  1. (C 6) 

An equation for G(r) can be derived from the Laplace transform of (4.8). The 
transformed equation depends parametrically on the square root of the transform 
variable s and it is thus reasonable to assume that the Laplace transform of G(r) can be 
expanded in powers of s'l2 for small values of s. Under the further assumption that the 
Laplace transform of a(r) is an analytic function of s except at s = 0 and a branch cut 
along the negative real axis, the power series in sli2 can be inverted term by term (cf. 
Carrier, Krook & Pearson 1966, p. 356)' which leads to the ansatz (C 6) and the 
following equation for O(r) : 

This problem has the solution 

with the constants A and B given by 
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